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A study is made of the stability of the solutions of a certain third 

order differential equation which has a discontinuous characteristic. 

In the general case, the investigated equation describes a definite 

class of nonlinear feedback control systems. The stability of the solu- 

tion is attained by increasing a parameter K (the transfer coefficient). 

It is shown that for a large enough value of K any operating regime of 

the considered system passes after a certain instant of time into a 

slipping state. Hereby the dynamic error of the system becomes less 

than any given number. For the linear case, the given problem has been 

solved in [l, 21. 

1. Let us consider the differential equation 

. . . 
x + F (x, i, & t) + Kx sign [x (ii - cp (x, i))l = 0 (1.1) 

where K is a positive constant, the function F(x, i, 2, t) is continu- 

ous in all of its arguments in the region 

is hounded in t for fixed x, i, 2, and has continuous first order 

partial derivatives with respect to x, ;, ; and t; the function cp(x, i) 

is continuous and has piece-wise continuous first and second order 
partial derivatives with respect to i and n in the region 

1005 
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Equation (1.1) is equivalent to the system of differential equations 

;: = y, &qt ;= - F (z, Y, 2, t) - Kg sign [x (z - cp (G ?/))I (1.2) 

Let us impose the following restrictions on the functions 9(x, y) 
and F(x, y, z, t) : 

4 1 P* F (G y i P, z I P2, tpf I < A h, y, 4, 1 P(P (% Y I P> I < B (~2A 

for sufficiently small values of the parameter p; here A(x, y, Z) and 
B(x, y) are assumed to be continuous functions of their arguments 

b) cp(0,0)=0,cp(x,0)2<0 forr#O, a 
s [cp(Gy)--q(x, O)ly<O for Y#R rta, 

cp(x, 0)ds = CXJ 

We note that the condition (a) is satisfied when the function Ffn, 

y> 2, t) is linear in x, y, 2, and is bounded in t for 0 <t < m. Any 
linear function cp(x, y) = cx + dy, where c and d are constants, also 
satisfies condition (a); furthermore, it will also satisfy condition 
(b) if c <O andd<O. 

In the general case equation (1.1) describes a control system of a 
nonlinear object which reacts to an arbitrary input. For the linear 
case this equation was considered in [1,21, where a study was made of a 
third order control system of a variable structure. The theory of 
similar systems has also been developed in [3,41. We shall now formulate 
the basic results of our work. 

~eorem. Let conditions (a) and (b) be satisfied, and let E be a 
given positive number. Then, for the given bounded region G of the phase 
space, there exists a positive number I{, such that for every I( > hrO, any 
solution of system (1.2) whose initial value lies in G will satisfy 
after some instant of time the condition 

I x (t) I < EY 

Note i. Certain problems on 
(1.2). Indeed, let us consider 

I Y 0) I < 87 I z @I I < E 

optimal control lead to systems of type 

the. system of differential equations 

i = - P (I, y* z, t) - Ku (t) x (1.3) 
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find a function u(t) such that, for Iu(t) 1 < 1, 

z) will have, because of system (1.3), the maximum 

51. It is not difficult to see that the function 

u(t) must, in this case, have the form u(t) = sign(x&/&). But this 

leads, under some additional hypotheses, to system (1.2). If one looks 

for a function u(t) which will minimize some functional, then, making 

use of the maximum principle of L.S. Pontriagin. one again is led to a 

system of type (1.2). 

Note 2. In the general case, system (1.2) is a system of differential 

equations in which the right side of the third equation has a discon- 

tinuity on the surface z = 9(x, ‘y). The theory of systems with discon- 

tinuous right-hand sides has been well developed in (6-81. 

The plane x = 0 is a plane of switching in the sense that the quantity 

s= sign[x(z - 9(x, y))l, which appears in an equation of system (1.2). 

changes sign. However, this plane, as can be easily seen, is not a plane 

of discontinuity; the trajectories of system (1.2) make a “suture” with 

the plane x = 0. A different situation occurs on the surface (S) given 

by equation z = (p(x, y). 

Let us introduce the notation R = z - 9(x, y). Then one can find at 

every point #(x, y, Q(X, y)) of the surface (S), at a fixed instant of 

time, the quantities 

N, = lim dR / dt, N, = lim dR / dt 
R-+-H R-+-o 

where dR/dt can be computed by means of system (1.2). If hereby we find 

that N1N2 > 0, then the given point of the surface (S) will be a point 

of a suture, that is, the trajectory of system (1.2) will intersect the 

surface (S) at the point M, and will pass from one part of the phase 

space relative to the surface (S) into another part. If however, N, < 0 

and N2 > 0, we shall have a more interesting case of the position of the 

trajectories of system (1.2), the case of “slipping”. In this case the 

vectors of the system which act on both sides of the surface (S) will be 

directed to the surface itself. Hence, the point, of the phase space, 

having fallen on the surface (S) must remain on it until the above in- 

dicated inequalities for N, and N2 are fulfilled. In order to find the 

vector of the velocity of slipping of the point on the surface (S), one 

usually makes use of the following rule 161. From the given point of 

the surface, one extends velocity vectors which are determined by 

systems acting from one as well as from the other side of the surface. 

The ends of the constructed vectors are connected by a straight line. 

The point of intersection of this straight line with the tangent plane, 

drawn to the surface at the given point, is taken as the end of the 

vector of slipping of the point on the surface (S). Starting out with 
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this rule, and ascribing to the point (x, y, 9(x, y)) of the surface 

(S) the coordinates (x, y), one can easily obtain, in the regions of 

slipping of this surface, the system of equations 

L = y, i = cp (5, Y) (1.4) 

which describes the regime of slipping. 

We note that ,this regime of slipping which is described by system 

(1.4) does not depend on the form of the function F(x, y, z, t). This 

observation is important if one takes into consideration the fact that 

by increasing the value of K one can make any point (other than the 

origin) of the surface (S) be a point of slipping of the system (1.2). 

If, in some way, we could make the points of the phase space of the 

system fall on the surface (S), and then (while in the regime of slip- 

ping) make them move in the neighborhood of the origin, then we would 

obtain. in some sense, a property of stability of the solution of system 

(1.2). Hereby. this property of stability would appear as a rough one 

relative to the variation of the function F(x, y, z, t) which does not 

disturb the existence of the slipping regime. 

2. Proof of the theorem. We shall first show that any point of the 

region G (the region of possible initial positions), which moves in 
accordance with the equations of system (1.2), will at some time reach 

the surface (s). For this we introduce a change of variables in the 

system 

t = pz, x = I, Y = PY, 2 = p’z (p = I&‘“) (2.1) 

The new system can be written in the form 

dX Y dY -_Z dZ 
-= ) _I-nX (2.2) 
d% 

-- I 
dr d% 

- P’F (X, Y / P, Z f pa, ~~11 

n = sign IX (Z - pag, (X, Y I p)] 

The quantity p plays the role of a small parameter. 

Along with system (2.2). which is equivalent to system (1.2). we will 

consider also the simplified system 

dX Y -= ( 
dt 

!I!x=z __=-llx dZ 
dr ’ d% 

(2.3) 

We shall first show that a point M(t) that moves along a trajectory 

of this system will reach the surface (S). Let us denote by Gp the image 

of the region G under the transformation (2.1). 
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We now introduce the notation Q = Z - p*p(X, Y/p) and divide the 

region G into four sub-regions Cl, C2, G, and G,. by defining them in 
the follgwing way: 

Q>O, X>O (Gl), Q <O, x<o (Cd 
Q>O, X<O (GJv Q <‘A x>o ((a 

Let us assume that the initial point 8M0(X0, Y,, Z,) of a trajectory 
lies in the region G2. It is easy to see that the solution of system 
(2.3) in the region G, can be written in the form 

x = ceT + ‘pl (T), Y = ce’ + ‘p2 (z). 2 = ce’+(Ps(t) 

c = l/Q (X, + y, + .%I) 

The functions ql(~), T*(T) and TV tend towards zero when T - CD. 

If the coordinates of the point M, satisfy the conditions X, + Y, + 
Z, > 0, then the negative abscissa of the point M(T) will necessarily 
change sign when T increases. Therefore, if the point M(T) does not 
reach the surface (S), then it must reach the plane X = 0. and at this 
instant Y > 0. If, however, X, + Ye + Z. < 0, then we shall have the 
next equation for the trajectory which starts out from the point El,, 

Q (7) = ‘/s (XO -I- YO f ZJ e5 f (p3 (T) - pzq (X (T), Y (T) / p) 

Suppose that a point M(T) starts in the region G,. Then its abscissa 
satisfies the inequality X(T) < 0 for all T; we shall also have Y(T) < 0 
as y increases. But condition (b) implies the validity of inequality 
9(X(r), Y(T)/P > 0. This means that the quantity Q(T), which is positive 
in the region Gg. must become zero when T increases, i.e. the image 
point of system (2.3) must reach the surface (S) as T increases. If, 
however, one assumes that under the condition that X,, + Y, + Z, < 0 for 
the initial point M, of the trajectory, the image point M(T) leaves the 
region G2, then it is at once clear that the point M(T) can reach the 
plane X = 0 only between the lines Y + Z = 0 and Z = q(O, Y/p). From 
condition (b) it follows that the line Z = o(O, Y/p), with Z > 0, is 
located in the region Y < 0. 

Therefore, if the point h!(T) starts out from the region G2, then 
Y < 0 at the point where M(T) falls on the plane X = 0. This leads to a 
contradiction, because the inequality dx/dT = Y < 0 implies the im- 
possibility of an increase in X at the time of intersection of the point 
!!(T) with the plane X = 0 while the point M(T) is passing from the 
region G,, where X < 0. into the region Cl. where X > 0. 

And thus, since the initial point Mo of the trajectory lies in the 
region G2, for any sufficiently small value of p, the image point M(T) 
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of system (2.3) either falls on the surface (S) when t increases, or it 

passes into the region G1, thereby intersecting the plane X = 0 in that 
part where Y > 0. 

Suppose now that the initial point M, lies in the region G1. As long 

as the image point M(s) of system (2.3) does not leave the region G1, 

we have 

x tz) = cle-T + e1/*5 [c, cos (Ya V/3 z) + c3 sin Wa Vz 41 

Here cl, c2 and c3 are some constants, where c1 = (X0 - Yg+ Zo)/3. 

Two possibilities can occur: either the point M(T) reaches, in a 

finite time T, the surface (S). or its abscissa X(7) changes its sign 

as the point moves, i.e. the point M(T) meets the plane X = 0. The only 

exceptions are the points which lie on the integral straight line 
x= - Y = Z; they approach the origin asymptotically with an increase 

in f. 

The points which pass from the region G, into the region Gq through 

the plane X = 0 either meet there the surface (S) or they return again 

into the region G, through the half-plane X = 0, Y > 0. We shall show 

that after its return to the region Cl the point M(T) meets the plane 

(S) without leaving G1. For this purpose we consider one of such points 

with the coordinates x,,= 0, Y, > 0, 2, > 0, and we assume that the func- 

tion X(7) given by relation (2.4) becomes zero for the first time when 

T = 71. By Rolle’s theorem, the function Y = dX/dT will vanish on the 

interval (0, ~1) at least once; let this happen the first time at 

T = 72 Q T1. Since Z(0) = 2, > 0, the function k’(t) will increase at 

the point T = 0. Therefore, we can apply again Rolle’s theorem. Thus we 

find a number fJ such that 0 < ‘3 < TV and Z(-r3) = 0. But this means 

that on the interval (0, -rl) there is a point at which the function 

Z(-r) takes on a negative value. Hence, the quantity Q = Z - p”p(X, Y/p) 

must vanish, for sufficiently small p at least once before the point 

M(T) falls again on the plane X = 0. 

Finally, let us consider an initial point M,, from the region G1. the 

coordinates of which satisfy the conditions X, = 0, Y,, > 0. Z. < 0. It 

is easy to see that such a point is located between the integral plane 

x- Y t X = 0 of system (2.3) with n = 1 and the surface (S). Since 

these surfaces intersect the plane X = 0 in the lines Z = Y and Z = 

p29( 0. Y/p) * it is obvious that the point M(-r) cannot enter into the 

region X = 0. Y < 0 without having first met the surface (S). 

Thus, if the initial point MO belongs to the region G1, then. for 

sufficiently small p, the image point M(T) of system (2.3) will either 

at once meet the surface (S) as 7 increases, or it will pass into the 
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region G, and there meet the surface (S), or it will pass into the 

region G2 and from there return to the region G, and there meet (S). 

Entirely analogous considerations can be made for initial points 

that lie in the regions Cj and G4. 

It has thus been proved that for small enough p, the point (I(T) which 

lies on Gp and moves in accordance with the equations of the simplified 

system (2.3). will either meet the surface (S) in a finite time T. or 

it will approach the origin of the coordinate system asymptotically 

when the point M(T) belongs to the straight line X = - Y = Z. In view 

of the theorem on the continuous dependence of the solution on the para- 

meter, one can make analogous conclusions for system (2.2) and hence 

also for system (1.2). In other words, we have proved that for a suffi- 

ciently large value of K, the point M(t) which lies in the region C of 

possible initial conditions and which moves according to system (1.2), 

will meet the surface of switching (S) when t increases. 

We now pass to the second part of the proof of the theorem; we shall 

study the behavior of the image of the point M(t) which under the action 

of system (1.2) reaches the surface of switching (S). For this purpose 

we consider a new coordinate system in which x and y remain the same, 

but the third coordinate is R = z - 9(x, y). Then system (1.2) is trans- 

formed into an equivalent system of differential equations 

2 = Y, 4 = R + cp (~9 Y), ti = - qua’ (2, y) R - 

- F (x, Y, R -t cp (5, Y), t) - Knx - ‘Pi’ (G Y) Y - Q’ (x9 Y) q (i, Y) 
(n = sign zR) (2.5) 

Under such a coordinate transformation the surface of the change- 

over t = 9(x, y) passes into the plane of switching R = 0. Hence, by 

examining the behavior of the image point which under the action of 

system (2.5) reaches the plane R = 0, we can draw corresponding conclu- 

sions about the nature of the behavior of the image point of system 

(1.2) with respect to the surface (S). 

On the plane R = 0. the quantity h takes the form 

i = - Knx - @ (I, y, t) 

where we have used the notation 

(2.6) 

@ lx, Y1 t) = p Ix, Yl cp (57 Y)? t) + ‘Pr’ (x9 Y) Y -I- Tar’ (xv Y) cp b, Y) (2.7) 

Let us denote by D the region of the plane R = 0 which consists of 

the ends of the arcs of the trajectories which start in the region C. 

From the preceding part of the proof it follows that the region D is a 

uniformly bounded region when K - m. Indeed, the transformation (2.1) 
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transforms the region G into the region G whereby it is easily seen 
that if pl > p2 we shall have G 

Pl 
> G 

P2’ 
!? he points of G 

Pl 
and G 

P2’ 
moving along the trajectories of system (2.3) pass into points of the 

regions D 
Pl 

and D 
P2’ 

which lie in the plane R = 0, whereby D 
Pl 

3 D 
P2’ 

By the theorem on the continuous dependence of the solutions on the 

parameter, we can draw a conclusion on the boundedness of the region 

which consists of the points of the surface (S) that have come out of 

the region Cp along trajectories of system (2.2). Returning then to the 

old coordinates, we obtain the boundedness of the region D when p - m. 

On the basis of the above formulated hypotheses relative to the func- 

tions F(x, y, 2, t) and 9(x, Y). we have the following relation in the 

region D: 

From equation (2.6) one can easily see that the straight lines 

x = Ar and x = - AX, where AX = m/K, separate (in the plane R = 0) a 

strip 1x1 A < x outside of which the sign of the derivative d for system 

(2.5) is given by the relation sign fi = - n sign X. An analysis of this 

formula shows that the points of the plane R = 0, which are located out- 

side the indicated strip, are points of slipping of system (2.5). The 

motion of the image point on this part of the plane R = 0 (outside the 

strip 1x1 < AX) are defined by the limiting differential equation i = 

9(x, ;) which is equivalent to the system of equations (1.4). 

Inside the strip 1x1 < AX of the plane R = o the sign of the deriva- 

tive k is undetermined. The strip contains the regions of “sutures” 

bounded by the curves 

CJ (x, y, t) + Knx = 0 (2.9) 

where the trajectories of system (2.5) cut the Plane R = 0 with an in- 

crease of time. 

Thus, the image point iw( t) of system ( 2.5) after reaching the plane 

R = 0. moves in it in accordance with system (1.4) until it comes at 

the time t = t0 > 0 to the boundary of the region of “sutures”, i.e. to 

one of the curves (2.9) at some point M,(x,, ye). The actual fact of 

reaching this point is caused by the stability in the large of the zero 

solution of system (1.4). This stability follows from the condition (b) 

for the function 9(x, y) [91. 

Later, as the time t increases. the image point M(t) will meet the 

plane R = 0 and it will begin to move under the action of the equations 

of system (2.5) either in the half-space 6 > 0 (when n = - l), or in 



Stability of solution of a differential equation 1013 

the half-space R < 0 (when n = 1). We shall show that for large enough 
values of K the point M(t) of system 

(2.5), after having remained a suffi- 

ciently short time outside the plane 

R = 0, returns to this plane at a 

point which lies sufficiently close 

to y. 

Let us suppose for the sake of 

definiteness that the point MO is 

located in the second quadrant of 

the plane R = 0, i.e. its coordi- 

nates satisfy the conditions - AZ 4 

%O < 0. y. > 0 (see figure). Further, 

let us assume that the following re- 

lation holds 

(2.10) 

Making use of the equations 

Y dy I dx = R $I rp (2, Y) 

y dR / dx = - q;R - F (x, y, R f ‘p (x, y), t) - Knx - cp,‘y - cp$cp (2.11) 

which were obtained from the differential equations of system (2.5), we 

find an approximate solution y(x) and R(x) of system (2.11) which cor- 

responds to the trajectory of the image point M(t) with the initial 

point M,(r,, y,) = M(t,). Since for the point’ MO, ye > 0 by hypothesis, 

it follows that with an increase in time t > to, the image point, after 

having reached the plane R = 0, will move in the direction of increas- 

ing X. i.e. in the direction towards the plane z = 0. On the other hand, 

since [x,,( < AX, and the quantity AX = m/K can be made as small as we 

please by increasing K, we shall seek the solution in the interval 

rx,. 01, and for the finding of it we shall restrict ourselves to its 

first approximation 

Y (4 = Yo -I- cp (x0, Yo) ! yo (x - x0), R (4 = - Knx, - @ (x0, Y., toI ! y. (x - x0) 

The obtained formulas make it possible to find the approximate value 

of the coordinates of the point M,(z,, yl, R,), the point at which the 

trajectory cuts the plane x = 0 for some t = tl > to. Indeed, we obtain 

the equations 

x1 = 0, y1 = Yo - v (x0, Yo) x0 1 Yo = Yo* H -0 1- 

which are valid for sufficiently large values of K when one may neglect 
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terms of the same order of magnitudes as AZ. 

From the point Ml, the point M(t) moves, as the time t > tl increases, 

into the half-space x > 0 as long as the ordinate of the point remains 

positive. Since the ordinate of the point M, is again positive, in view 

of relation (2.10). the image point M(t) will move as time increases 

from the point M, in the direction of increase of x(t) at least for 

positive x which are sufficiently small compared to the number AX. Let 

us find the solution R(x) of system (2.11). which corresponds to the 

trajectory that emanates from the point M,. We want this solution in the 

form of a power series in X. and we shall neglect the terms of degree 

higher than two. 

Hereby we shall take into account the boundedness of the functions 

F(x, Y, 2, t), qG%, Y). and their derivatives, and we shall also assume 

that K is sufficiently large. 

Then we shall have 

R (5) = - Q, (0, ~0, t3 2 I YO - Kn 912~0 (2.12) 

from which we find the value of x for which the function R(x) becomes 

zero. At the same time we find the value of the abscissa of the point 

m2 = M(tq). the point at which the image point returns to the plane 

R = 0 when t = t2 > tl. 

For the abscissa of the point M, we obviously obtain 

x2 = - 2@ (0, yo, tJ / Kn 

Taking into account condition (2.8) we obtain the relation (x2( F2Ax. 

For the trajectory under consideration we obviously have x2 > 0, since 

the value of the ordinate of the point Ma differs from the value of the 

ordinate of the initial point M, of the trajectory by a quantity whose 

order of magnitude is that of Ax; i.e. on the interval [- AX, 2Axl. the 

sign of the ordinate of the point M(t) will remain positive in our case. 

Thus we have shown that for a sufficiently large value of K the image 

point M(t) of system (2.5)) after having met the plane R = 0 at the 

point M,(x,, Yo) the coordinates of which are such that (z,, 1 d Ax. 

Yo >> AX, will again return to the plane R = 0 at a point h12(x2, y2) for 

which the ordinate is again positive and comparable to the number yo, 

while the abscissa does not exceed the number 28~ (Fig.). The difference 

between the abscissas MO xnd M, is not greater than SAX. Therefore, the 

time of passage of the image point from the point MO to the point M, 

will be short if K is sufficiently large. 

Analogous arguments can be made for the trajectories of system (2.5). 
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which meet the plane R = 0 at some point M,,+(x,,*, Y,,*) where Y,,* < 0 

and 0 < x0* <AX if the condition IYJ >> AX is fulfilled. In other 
words, in this case it can be shown that the image point M(t), having 

left the plane R = 0 at the point ‘A!,,*, will cut the plane x = 0, and 

then having remained a short time outside this plane, will again return 

to this plane in the region of slippage at the point M2*(x2*, yp*), the 

coordinates of which (see figure) satisfy the relation x2* < 0, 1x2*1 G 
62A.z. Thus the presence of the strip 1x1 < Ax which contains the 
regions of sutures of system (2.5) causes a deflection of the considered 

trajectories from the plane R = 0. This deflection occurs on a strip 

which does not leave the strip 1x1 4 2Ax. Since AX = m/K, where m is 

the constant from relation (2.8), and K is the parameter of the system 

(2.5). it follows that one can always select a value of K so large that 

Ax can be made as small as we please. Simultaneously with the decrease 

of AX, the maximum deflection of the function R(x) from zero, as well 

as the time during which the image point of the considered trajectory 

remains outside the plane R = 0, become arbitrarily small. 

In the first part of the proof of the theorem it was established that 

from any point of phase space the image point of system (1.2) will 

reach, with an increase in time, the surface (S), where R = 0. The 

further behavior of the image point is determined by its motion on this 

surface and its deflection (or deviation) from this surface which is de- 

termined by the existence of regions of “sutures” of the system. 

Let us now consider, on the plane R = 0, in addition to system (1.4). 

also the system 

i = y, i = cp (2, Y) t R (t) (2.13) 

which is formed with the first two equations of system (2.5). By R(t) 

we denote here the value of the quantity R in the process of the motion 

of the point M(t) studied above. Therefore R(t) = 0 if the point slides 

along the plane R = 0; R(t) f 0 if the point M(t) is not on this plane. 

Therefore, system (2.13) describes the motion of the projection of the 

point M(t) on the plane R = 0. 

It has been shown above that for large enough K the function R(t) 

can be made arbitrarily small in absolute value. Further, because of the 

fulfillment of the condition (b), the zero position of equilibrium is 

for system (1.4) asymptotically stable for arbitrary initial disturb- 

ances [91. Let us now consider the function 

x 

v = yB - 2 
s 

9 (I, 0) dx 

0 
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The derivative of this function, taken with the consideration of 

(2.131, &as the form 

6 = 2Y 19! (2, Y) - cp (27 011 - 2R 0) Y = 2Ya, (0, Y) + 

+ 2~ Irp (rt Y) - g (0, ~11 - 2yrp (r, 0) - 2~ R (0 

From (2.12) it can be easily deduced that 1 yff ( f) 1 < m*/ZK, where a 
is a positive constant. On the other hand, if yu is an arbitrary small 

number then. taking into account condition (b), we can deduce the in- 

equality ycp(0, y) ( 0, and also that the ordinate y of any point of the 

region D is bounded, and that, if Iy\ > yu, we have yq(O. y) < - rO, 

where ru is some positive constant. 

Next. selecting the value of K large enough, we can obtain, in view 

of the continuity of the function 9(x, y), for points of the strip 

Ix\ < PAX (within the region D) the following inequality 

Finally, if K > 2m2/r we shall have also the relation IyW) t < 
r-o/4. Thus in the region ‘ix/ Q 2A2 with 1~1 > y0 we have for the de- 

rivative 3 the inequality 6 < - ro/2 < 0. Furthermore. f < 0 everywhere 

in the region D outside the strip 1x1 d 2Az. From this it follows that 

by choosing K sufficiently large we can make sure that the derivative ii 

will remain negative everywhere in the region D, except for an arbi- 

trarily small neighborhood of the origin of the coordinate system. But 

from the presented arguments there follows, in an obvious manner, the 

validity of our theorem. 
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